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Abstract

We present a new method of quantifying structure in any discreet point

set. The method is based on a multifractal approach and includes

correction for all relevant boundary and selection effects. The power of

this technique lies in its connection to higher order moments, in that it

not only probes clustering on different scales but also different densities.

Multifractal Formalism

The universe has already been shown to be well described using a multifractal framework
[Jones et al. ApJ Lett., 332, 1988]. In this analysis we will adopt the procedure laid out
in Hentschel & Procaccia [Phys. Rev. A, 27, 1266 1983] to determine the Rényi
(Generalised) dimensions of a point set embedded in a three-dimensional Euclidean space.
The probability of a galaxy, j, being within a sphere of radius r centred on galaxy i, is,

pi(r) =
ni(r)

N
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N
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Here ni(r) is the number of galaxies within radius r, N is the total number of galaxies and
Θ is the Heaviside step function. Eq.1 can then be related to the conditional partition
function [Grassberger & Procaccia. Phys. Rev. A, 28, 1983.],

Z(q, r) =
1

M
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[pi(r)]q−1 ∝ rτ (q) (2)

In this case M is the number of counting spheres and q defines the generalised dimension
we are investigating. τ (q) is the scaling exponent, which is then related to the infinite set
of Rényi dimensions through,

Dq =
τ (q)

q − 1
, q 6= 1 (3)

Clearly the special case of q = 1, the information dimension, cannot be determined using
the above expression but can be found approximately in the limit q → 1. This is an
important dimension to calculate as it gives equal weighting to voids and clusters. Voids
are enhanced for q < 1 and clusters are enhanced for q > 1, so q = 1 is, in some sense, the
most unbiased dimension in the set.

Boundary Corrections

Various methods have been proposed to correct for the ‘missing’ galaxies outside the
boundary of a survey. Here we will briefly introduce our own method.

Volume Correction

In considering a the counting sphere, of radius r, which extends beyond the geometrical
boundary of the survey. The number of galaxies counted in the sphere of radius is,
therefore, depleted. To correct for this problem we could either add galaxies to the missing
region or we could somehow modify the volume. We can recast Eq.1 as,
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Here V ⋆ is the reduced volume. On its

Figure 1: A counting sphere centred on a
galaxy with radius, r. Region R2 is outside
the survey and R3 is a masked region.

own this method would assign to the missing region
the same average density as the rest of the sphere.
This would be wrong if density varies with distance.
To overcome this problem we assume only that the
density does not vary with θ or φ i.e. the universe
is isotropic and hence Eq.4 will hold for fixed r.
So to apply our method to a galaxy survey we must
count in spherical shells, correcting in each shell and
then integrating over radius. The principle behind
this method is illustrated in figure 1. The shells
are individually corrected and summed according to,
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Here αi(r) ≡ V
V ⋆; this is the enhancement factor of

the ith shell at radius r and has value ≥ 1.

Toy Model

Below we present examples of a toy fractal model based on the Multiplicative Cascade.

As can be seen in the lower panels, the Renyi dimensions estimated using our volume
correction method are in excellent agreement with the predicted curves. It can be shown
[Mart́ınez et. al. ApJ 357 1990] that as L → ∞,
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Where the pi’s are input parameters. The above fractal images have the following
parameters:

Model p1 p2 p3 p4

I 1 1 1 0
II 1 0.75 0.75 0.5

III 1 0.5 0.5 0.25

Thus we feel justified in applying this analysis to galaxy redshift surveys despite their
complicated geometry. To begin with however we will analyse an ideal case; a Halo
Catalog.

DqR Surface

We now extend the idea of the Dq curve to vary
with scale. This gives us a DqR Surface. Here we
have applied the multifractal analysis to N -body
simulation and halos catalogues. The upper right
plot shows the Dq,R surface for the halo positions
in an ideal and complete (384 Mpc)3h−3 box
with a flat geometry and cosmological parameters
p = (Ωm, Ωb, n, h, σ8) = (0.3, 0.04, 1, 0.7, 0.9)
[Warren et al ApJ 646, 881, 2006]. Such
a surface has been calculate using dark matter
only. Overall, it is a very smooth surface, which
tends towards homogeneity on large scales. A
clear peak, at low q, and dip, at high q corresponds
to multifractality for R ≈ 10Mpc . The lower
plot shows the “normalised” conditional partition
sum for 2 < q < 9. The dark matter (dark line)
and halos homogeneity contributions [∼ R−3(q−1)]
have been factored out. Halos were extracted
from the simulation using a FOF with a linking
length of 0.2. With different HOD parameters we
reproduced different galaxy and group populations:
SDSS groups (green) and SDSS galaxies (magenta).

Summary and Conclusions

We have:

•Developed a new method for optimally correcting masked regions and boundaries in
redshift surveys.

• Introduced the Mutifractal Formalism and extended it to produce the DqR surface.

• Showed that we can recover the underlying Renyi dimensions of a multifractal
distribution while using our boundary correction.

•Applied the methodology to a Halo catalogs.

In future work we plan to analyse SDSS data, and in particular the LRG population, using
their clustering properties – characterised by the DqR surface – as a cosmological probe.


